Effect of polar intermolecular interactions on the elastic constants of bent-core nematics and the origin of the twist-bend phase.

نویسندگان

  • M A Osipov
  • G Pajak
چکیده

A molecular theory of both elastic constants and the flexoelectric coefficients of bent-core nematic liquid crystals has been developed taking into account dipole-dipole interactions as well as polar interactions determined by the bent molecular shape. It has been shown that if polar interactions are neglected, the elastic constants are increasing monotonically with the decreasing temperature. On the other hand, dipolar interactions between bent-core molecules may result in a dramatic increase of the bend flexocoefficient. As a result, the flexoelectric contribution to the bend elastic constant increases significantly, and the bend elastic constant appears to be very small throughout the nematic range and may vanish at a certain temperature. This temperature may then be identified as a temperature of the elastic instability of the bent-core nematic phase which induces a transition into the modulated phases with bend deformations like recently reported twist-bend phase. The temperature variation of the elastic constants is qualitatively similar to the typical experimental data for bent-core nematics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dielectric technique to measure the twist elastic constant of liquid crystals: the case of a bent-core material.

The effect of director pretilt on the twist magnetic Fréedericksz transition of nematics was investigated in a planar cell. The director configuration was calculated as a function of magnetic inductance. The dielectric and optical response of the nematic liquid crystal was numerically modeled. A dielectric measurement method for determining the elastic constant K_{22} is presented. The influenc...

متن کامل

Statistical mechanics of bend flexoelectricity and the twist-bend phase in bent-core liquid crystals.

We develop a Landau theory for bend flexoelectricity in liquid crystals of bent-core molecules. In the nematic phase of the model, the bend flexoelectric coefficient increases as we reduce the temperature toward the nematic to polar phase transition. At this critical point, there is a second-order transition from high-temperature uniform nematic phase to low-temperature nonuniform polar phase c...

متن کامل

Local distortion energy and coarse-grained elasticity of the twist-bend nematic phase.

The recently discovered twist-bend nematic phase of achiral bent-shaped molecules, NTB, has a doubly degenerate ground-state with a periodically modulated heliconical structure and unusual distortion elasticity, the theoretical description of which is still debated. We show that the NTB phase has the same macroscopic symmetry as another periodic mesophase, the chiral smectic-A, SmA*. Based on t...

متن کامل

Understanding the distinctive elastic constants in an oxadiazole bent-core nematic liquid crystal.

The splay and bend elastic constants of the bent-core oxadiazole material [C5-Ph-ODBP-Ph-OC12] have been investigated as a function of temperature across the nematic phase. The bend constant K(33) is found to take values of ~3.0 pN and to be almost temperature independent, whereas, the splay constant K(11) increases monotonically from ~3.5 pN close to the isotropic phase transition to values of...

متن کامل

Torsion in Microstructure Hollow Thick-Walled Circular Cylinder Made up of Orthotropic Material

In this paper, a numerical solution has been developed for hollow circular cylinders made up of orthotropic material which is subjected to twist using micro polar theory. The effect of twisting moment and material internal length on hollow thick-walled circular cylinder made up of micro polar orthotropic material is investigated. Finite difference method has been used to exhibit the influence o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European physical journal. E, Soft matter

دوره 39 4  شماره 

صفحات  -

تاریخ انتشار 2016